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EVOLUTION OF A SMALL DISTORTION

OF THE SPHERICAL SHAPE OF A GAS BUBBLE

UNDER STRONG EXPANSION–COMPRESSION

UDC 534.2:532A. A. Aganin and T. S. Guseva

The evolution of a small distortion of the spherical shape of a gas bubble which undergoes strong
radial expansion–compression upon a single oscillation of the ambient liquid pressure under a har-
monic law are analyzed by numerical experiments. It is assumed that the distortions of the spherical
bubble shape are axisymmetric and have the form of individual spherical surface harmonics with
numbers of 2–5. Bubble-shape oscillations prior to the beginning of expansion are taken into ac-
count. Generally, the distortion value during bubble expansion–compression depends on the phase of
bubble-shape oscillation at the beginning of the expansion (initial phase). Emphasis is placed on the
dependence of the maximum distortions in the initial phase at certain characteristic times of bubble
expansion–compression on the amplitude of the external excitation, liquid viscosity, and distortion
mode (harmonic number). The parameters of the problem are typical of the stable periodic sonolumi-
nescence of an individual air bubble in water at room temperature. An exception is the liquid pressure
oscillation amplitude, which is varied up to values that are five times the static pressure. That large
excitation amplitudes are beyond the stability threshold of periodic oscillations of spherical bubbles.
Their consideration is of interest from the point of view of increasing the compression ratio of the
bubble gas, i.e., increasing the maximum temperature and density achievable in the final compression
stage.
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Introduction. Numerous studies of the periodic sonoluminescence of an individual gas bubble in a liquid
have shown [1] that at the moment of maximum compression, the state of the bubble gas is characterized by
very high values of the density (103 kg/m3) and temperature (104 K), which has led to increased interest in this
phenomenon. Enhancing gas compression in the sonoluminescence mode has become one of the primary lines of
research. In particular, Hingelfeldt et al. [2] proposed a simple model for the periodic sonoluminescence phenomenon
and gave some recommendations on changing experimental conditions for the purpose of increasing the intensity of
periodic bubble sonoluminescence. However, attempts to increase the maximum density and temperature of bubble
gas in periodic oscillation modes have encountered various stability constraints [1, 2]. Therefore, studies aimed
at increasing the compression ratio of bubble gas have begun in different modes of bubble oscillations, including
the mode of periodically unstable, strong, single expansion–compression. Theoretical estimations using spherically
symmetric models have shown [3] that in this mode of bubble dynamics, the maximum gas pressure and temperature
are much higher than those achieved in the periodic sonoluminescence mode. The mode of single strong bubble
expansion–compression was implied in the experimental facility whose design was proposed in [4]. However, for the
first time it was implemented by Taleyarkhan et al. [5], who observed the release of neutrons and tritium nuclei
under ultrasonic excitation (with an amplitude of 15 bar) of a bubble cluster in deuterated acetone.
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The results of [5] have sparked a lively discussion [6]. A number of critical comments concern the lack of
estimates of the possibility of preserving the spherical bubble shape at the moment of its extreme compression.
Indeed, a spherical or nearly spherical bubble shape is one of the most important conditions for achieving high
compression ratios of bubble gas in any mode of radial bubble dynamics. The issue of the stability of the spherical
shape has been studied the most thoroughly for expanding bubbles, compressing bubbles, and bubbles that undergo
periodic expansion–compression. Emphasis has been given to determining the stability of the spherical bubble
shape. A vast list of references is given in [7, 8]. Both analytical [9–12] and numerical methods of research have
been employed. The stability of spherical oscillations of bubbles in the periodic sonoluminescence mode has been
studied primarily numerically [8].

The present paper deals with studying the variation of small distortions of the spherical bubble shape in the
case where all parameters of the problem correspond to the periodic sonoluminescence of an individual bubble and
the liquid pressure oscillation amplitude is much (two or three times) higher. Under such excitation amplitudes, the
periodic oscillations of a spherical bubble are unstable [13]. Therefore, we consider only a single bubble expansion–
compression under a single simple harmonic oscillation of the liquid pressure which starts with a depression phase.
It is assumed that prior to the beginning of expansion, the bubble surface performs undamped oscillations about
the spherical state with a natural frequency that depends on the number of the spherical harmonic specifying
the distortion mode, on the liquid density, surface tension, and the unchanged bubble radius. A similar situation
arises, for example, at the end of each period of bubble oscillation at the center of a spherical flask in the periodic
sonoluminescence mode, where radial oscillations of the bubble are already absent and its surface performs damped
oscillations about the spherical state. In this case, liquid pressure variation near the bubble that ensures its strong
expansion–compression can be implemented in the next oscillation period by an appropriate pressure pulse on the
flask wall. A situation similar to the indicated one arises after damping of radial bubble oscillations produced by a
laser breakdown in a liquid at the center of a spherical flask. In this case, the subsequent liquid pressure variation
near the bubble can be caused by an incident spherical wave produced by an appropriate pressure pulse on the
flask wall. In the formulation of the present work, the moment of the beginning of bubble expansion with respect
to the phase of its shape distortion (initial phase) is considered arbitrary. Emphasis is placed on the variation of
the distortions that are maximal in the initial phase. The damping of the bubble surface oscillations prior to the
beginning of the expansion is ignored. As a result, the distortions that are maximal in the phase can be slightly
overestimated.

In view of the small bubble size, considerable attention is paid to the effect of liquid viscosity. Fir this, the
model of [14] and its simplified version ignoring the rotational motion of the liquid are used.

1. Mathematical Formulation of the Problem. A gas bubble is at the center of a spherical liquid
volume. Prior to the beginning of pulsed action, the bubble radius does not change and its surface performs small
undamped oscillations about the spherical state. At an arbitrary (with respect to the shape-oscillation phase) time,
a long spherical wave is incident on the bubble, so that the ambient liquid pressure performs a single large-amplitude
harmonic oscillation which starts with a depression. Because of the liquid pressure variation, the bubble is first
strongly expanded and is then compressed even more strongly. This is followed by a number of rapidly damped
radial oscillations of a relatively small amplitude. The variation of the maximum (in the initial phase) distortions
of the spherical bubble shape is studied in the interval between the beginning of bubble expansion and the moment
of its first extreme compression under the assumption that the distortions remain small.

The equation for the interface at an arbitrary time t in spherical coordinates r, θ, and ϕ is written as

r = R(t)
[
1 +

∞∑
i=2

εi(t)Pi(cos θ)
]
,

where R is the bubble radius, Pi( · ) is a Legendre polynomial of order i, εi is the corresponding distortion of
the spherical shape [inward, where εiPi(cos θ) < 0, and outward, where εiPi(cos θ) > 0]. Here and below, we
use primarily nondimensional quantities. Dimensional quantities are denoted from below by an asterisk. In the
nondimensionalizing procedure, the basic units are the liquid density ρ0∗, the initial bubble radius R0∗, and the
characteristic velocity u0∗, which is defined by the expression

√
p0∗/ρ0∗, where p0∗ is the static pressure of the

liquid.
The distortions are assumed to be small (|εi| � 1). With this assumption and taking into account the liquid

viscosity according to [14], the distortion εi is described by the equation
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Rε̈i +
[
5Ṙ +

2(i + 1)(i + 2)
Re R

]
ε̇i +

[ (i2 − 1)(i + 2)
We R2

+
3Ṙ2

R
+

6i(i + 1)Ṙ
Re R2

− (i− 2)R̈
]
εi

+
i(i + 1)

R

[Ti(R, t)
Re R

+
2(2i + 1)Ri−2αi

Re
+

Ṙ

R
βi

]
= 0, (1)

αi = − i + 1
2i + 1

∞∫
R

Ti(r, t)r−i dr, βi =

∞∫
R

[(R

r

)3

− 1
](R

r

)i

Ti(r, t) dr,

where Re = u0∗R0∗/ν∗, ν∗ are the kinematic viscosity of the liquid, We = u2
0∗ρ0∗R0∗/σ∗, and σ∗ is the surface

tension. The function Ti(r, t) characterizes the rotational motion of the liquid. It is related to the liquid velocity u

by the expression

∇× u = ∇×
( ∞∑

i=2

Ti(r, t)Pi(cos θ)
)
e1,

where e1 is the directing vector of the coordinate line r. The function Ti(r, t) is determined from the equation

∂Ti

∂t
+ ṘR2 ∂

∂r

(Ti

r2

)
+

1
Re

( i(i + 1)Ti

r2
− ∂2Ti

∂r2

)
= 0 (2)

subject to the boundary conditions

Ti(R, t) = 2{(i + 2)Rε̇i + 3Ṙεi + (2i + 1)Ri−1αi}/(i + 1), Ti(∞, t) = 0. (3)

The integral expressions of αi and βi characterize the aggregate effect of the liquid vorticity on the bubble-shape
oscillations. In this case, boundary condition (3) is implicit. As in a number of other studies (see, for example, [13]),
an accounting of the liquid viscosity according to (1)–(3) will be called accurate.

The variation of the bubble radius R is described by the following equation for nondimensional quantities [15]:(
1− Ṙ

c0
+

4
Re c0R

)
RR̈ +

3
2

(
1− 1

3
Ṙ

c0

)
Ṙ2 =

(
1 +

Ṙ

c0

)
(pb − p∞) +

R

c0
(ṗb − ṗ∞)− 4Ṙ

Re R
− 2

We R
, (4)

where c0 is the sound velocity in the liquid, pb and p∞ are the bubble gas pressure and the liquid pressure,
respectively, at a large distance from the bubble, which are defined by the relations

pb = p0
b

( 1−A

R3 −A

)γ

, p0
b = 1 +

2
We

,

p∞ = 1−∆p sinωt, 0 6 t 6 2π/ω.

(5)

Here A is a constant and ∆p and ω are the oscillation amplitude and frequency, respectively.
At t < 0, we set

εi(t) = ε0
i sin (ωit + ϕ0), ωi =

√
(i2 − 1)(i + 2)/ We ,

and at t = 0,

R(0) = 1, Ṙ(0) = 0, εi(0) = ε0
i sinϕ0, ε̇i(0) = ε̇0

i cos ϕ0, ε̇0
i = ε0

i ωi,

Ti(r, 0) = Ti,ϕ0(r),
(6)

where ε0
i and ωi are the oscillation amplitude and frequency of the spherical bubble shape, respectively; Ti,ϕ0(r) is

the radial distribution of the function Ti that corresponds to the initial phase ϕ0. The initial phase ϕ0 is arbitrary
(−∞ < ϕ0 < ∞).

Employing the finite-difference method to approximate the spatial derivatives in Eq. (2) and using quadrature
formulas to approximate the integrals in the expressions for αi and βi, we reduce problem (1)–(6) to a system
of ordinary differential equations for R̈, ε̈i, and the grid values of the function Ti(r, t). One of the difference
equations for Ti(r, t) follows from boundary conditions (3). The solution of the obtained system of equations is
found numerically by the Dorman–Prince method [16].
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Fig. 1. Bubble radius R and the amplitude of relative distortion of
the spherical bubble shape |ε3/ε0

3| versus time for ∆p = 2 ignoring
the viscosity effect on the bubble shape (points 1–5 show a number of
characteristic times).

The problem is considered for p0∗ = 105 Pa, ρ0∗ = 1000 kg/m3, R0∗ = 4.5 µm, c0∗ = 1500 m/sec, ω∗/(2π)
= 26.5 kHz, ν∗ = 10−6 m2/sec, σ∗ = 0.073 N/m, A = 8.5−3, and γ = 1.4, which corresponds to the characteristic
case of periodic sonoluminescence [1] where the air bubble is in water at room temperature. In the nondimensional
variables, c0 = 150, ω/(2π) ≈ 1.2 · 10−2, Re = 45, We ≈ 6, and 1.4 6 ∆p 6 5.

2. Effect of Bubble-Shape Oscillations prior to the Beginning of Expansion. Figure 1 gives the most
typical time dependences of the bubble radius and the relative distortion of its spherical shape before and during
strong single expansion–compression for the problem parameters considered. Points 1–5 denote the times t1−5,
among which t1, t2, and t4 are characteristic for the solutions of Eq. (1) and t3 and t5 correspond to the maximum
expansion and maximum compression of the bubble. At the beginning of the expansion stage, the distortion of the
spherical bubble shape varies in a damped oscillation mode with an increasing period. At the time t1, the variation
of the distortion enters a damping mode without oscillations (the aperiodic damping mode) and is considerably
slowed down. In the interval t2–t3, the distortion again varies in a damped oscillation mode but with a very large
period. The stage of bubble compression starts with a slow variation of the distortion in a growing oscillation mode.
The rate of variation in the distortion increases rapidly as the compression rate becomes higher. At the time t4,
the distortion variation enters a mode of increase without oscillations (the aperiodic growth mode). In this regime,
the distortion amplitude varies at increasing rate and with several very sharp changes in the direction of increase
in the distortion: growth of the distortion into the interior of the bubble is replaced by its increase outward and
vice versa. In the stage of accelerated compression, an increase in the distortion of the spherical bubble shape is
due to Birkhoff–Plesset type instability [10, 11]. An especially rapid increase in the distortion occurs at the final,
very short, segment of the decelerating bubble compression. This is related to the development of Rayleigh–Taylor
instability [11, 17]. The indicated features in the bubble shape variation are characteristic of all examined harmonic
numbers i on most of the range 1.4 6 ∆p 6 5. We note that at the very end of the compression stage, the employed
model of bubble dynamics may be not quite adequate. In particular, here the liquid compressibility effect near
the bubble, which is ignored in the present work, can become significant. Therefore, the results pertaining to the
moment of the maximum compression (collapse) of the bubble should be treated as an estimate.

Figure 2 gives curves of the relative distortion ε2/ε0
2 at the moment of bubble collapse versus the pressure

variation amplitude ∆p ignoring the effect of liquid viscosity on the bubble shape variation. It is evident that there
is a strong dependence of the distortion value on ϕ0. Thus, for ∆p ≈ 3, the distortion at the moment of collapse
for ϕ0 = π/2 is close to zero, and for ϕ0 = 0, it exceeds the initial value by a factor of approximately 80. A strong
dependence of the distortion value on ϕ0 is also observed at other times of the expansion–compression. It is also
preserved in the case of accounting for the liquid viscosity.
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Fig. 2. Relative distortion of the spherical bubble shape ε2/ε0
2 for ϕ0 = −π/4,

0, π/4, and π/2 (curves 1–4, respectively) and the relative distortion of the
spherical shape ε2mc/ε0

2 with the maximum ϕ0 (curve 5) versus ∆p at the time
of bubble collapse ignoring the viscosity effect on the bubble shape.

Below, we consider the variation of the distortion εim(t) that at the time t is maximal among the values
of εi(t) that correspond to −∞ < ϕ0 < ∞. For brevity, the parameter εim(t) is called the maximum distortion. We
use the designations εimm = εim(tm) and εimc = εim(tc), where tm and tc are the times of the maximum bubble
expansion and maximum compression, respectively. With allowance for periodicity in ϕ0, the set −∞ < ϕ0 < ∞ is
replaced by a discrete set of points Φ0 on the half-period −π/2 6 ϕ0 6 π/2. In Fig. 2, curve 5 shows the relative
maximum distortion at the time t = tc. It is evident that it differs markedly from curves 1–4, in particular, in that
its values are positive everywhere and increase monotonically.

3. Dependence of Maximum Distortions on Radial Motion. The effect of the radial bubble dynamics
on the bubble shape variation during expansion–compression is estimated using a formulation ignoring the effect of
liquid viscosity on the distortion. In this case, relation (1) reduces to the equation

Rε̈i + 5Ṙε̇i +
[ (i2 − 1)(i + 2)

We R2
+

3Ṙ2

R
− (i− 2)R̈

]
εi = 0. (7)

Using (7) for i = 2, we find that the aperiodic damping mode during bubble expansion arises for all ∆p in
the range 1.4 6 ∆p 6 5, and for i = 3, 4, and 5 it is absent for ∆p < 1.5, 1.8, and 2.1, respectively.

Figure 3a gives curves of the ratio ε0
i /εimm, which characterizes the damping ratio of the maximum distortions

in the expansion stage (ε0
i is the maximum initial distortion) versus the amplitude ∆p for various values of i. For

∆p = 1.4, the values of ε0
i /εimm are close for all i. As ∆p increases to 1.9, 2.3, and 3.1, the increase in the damping

ratio is more considerable for harmonics i = 3, 4, and 5, respectively, than for i = 2; for i > 3 in the indicated
intervals, it changes almost equally. In the case of further increase in ∆p, where a rather long aperiodic mode is
already observed for i > 3 in the expansion stage, the damping ratio for i = 2 continues to increase, and for i > 3,
it remains constant (i = 3) or decreases monotonically (i = 4 and 5). Thus, as the harmonic number i increases,
the nature of the dependence of the damping ratio ε0

i /εimm on the excitation amplitude ∆p varies. For i = 2, it is
monotonically increasing; as i increases, the monotonicity is gradually violated. For i = 5 and ∆p ≈ 3, a distinct
maximum is already observed. The least damping of the maximum distortions in the interval 1.4 6 ∆p 6 5 is
observed for i = 2: by a factor of approximately 60 for small ∆p and by a factor of almost 110 for large ∆p. With
increase in the harmonic number i, the damping ratio of the maximum distortions in the expansion stage increases
on most of the examined range of ∆p. In particular, for ∆p = 5, it increases from ≈110 (i = 2) to ≈230, 500, and
1400 (i = 3, 4, and 5, respectively).

For i = 2, the rate of variation of the maximum distortion at the time tm (i.e., at the beginning of the
compression stage) decreases monotonically in the range 1.4 6 ∆p 6 5 (Fig. 3b). For i = 4 and 5, it also decreases
for small ∆p for which the aperiodic damping mode is absent. Next, in the intervals 1.8 < ∆p < 2.3 for i = 4 and
2.2 < ∆p < 3.3 for i = 5, where a short aperiodic mode already occurs in the expansion stage, the value of |ε̇im/ε0

i |
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Fig. 3. Damping ratio of the maximum distortions in the stage of bubble expansion ε0
i /εimm (a), the

modulus of the relative rate of change in the maximum distortion at the end of the expansion stage
|ε̇im/ε0

i | (b), and the growth ratio of the maximum distortions in the compression stage εimc/εimm (c) and
during the entire expansion–compression process εimc/ε0

i (d) versus ∆p for harmonics i = 2−5.

increases notably. With further increase in ∆p for i = 4 and 5, the rate of variation of the maximum distortions at
the end of the expansion stage decreases (i = 4), like for i = 2, 3, or increases slightly (i = 5). On the final segment
4 6 ∆p 6 5, its values are close for all i.

Figure 3c gives curves of the ratio εimc/εimm versus ∆p for various values of i. This ratio characterizes the
growth ratio of the maximum distortions in the compression stage. As is evident from Fig. 3a and b, over the entire
range 1.4 6 ∆p 6 5 and for all i, the ratio εimc/εimm exceeds ε0

i /εimm, i.e., the growth of the maximum distortions
for compression exceeds their damping for expansion. In the range of small ∆p, the values of εimc/εimm for i = 2−5
are close, in particular, for ∆p = 1.4, we have εimc/εimm ≈ 800. With increase in ∆p, the growth ratio of the
maximum distortions under compression εimc/εimm for i = 2 and 3 increases to approximately 2 · 104 for ∆p = 5
under a nearly linear law. For i = 4 and 5, the ratio εimc/εimm increases much faster in the intervals of ∆p in which
there is an increase in the variation rate of the maximum distortions at the beginning of the compression stage
|ε̇im/ε0

i | (see Fig. 3b). At the end of these intervals, the increase in the growth ratio of the maximum distortions
under compression εimc/εimm slows down, and up to the end of the examined range of variation of ∆p, it occurs
similarly to that for i = 2 and 3. In this case, the values of εimc/εimm for i = 4 and 5 are close and exceed the
values of this ratio for i = 2 and 3 by a factor of approximately 1.6–1.7.

Figure 3d shows curves of the ratio εimc/ε0
i versus ∆p for i = 2−5. This ratio characterizes the growth ratio

of the maximum distortions during the entire bubble expansion–compression process from the initial moment of
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expansion t = 0 to the moment of the maximum compression (collapse) t = tc. The value of εimc/ε0
i is determined

by the ratio of the damping ratio of the maximum distortions for expansion to the growth intensity for compression.
The largest values of εimc/ε0

i correspond to the harmonic with a number i = 2, for which the least damping of
the maximum distortions in the expansion stage is observed. The value of ε2mc/ε0

2 increases monotonically from
approximately 12.3 at the beginning of the range of variation of ∆p to almost 170 at the end. With increase in i, the
monotonicity in the growth of εimc/ε0

i is increasingly violated. In the region of small ∆p, the increase in the damping
ratio of distortions under expansion with increase in ∆p exceeds the increase in the growth rate under compression
(for i = 3, they nearly compensate for each other); therefore, in this region, the growth rate of the maximum
distortions by the moment of collapse εimc/ε0

i for i = 4 and 5 decreases. In the neighborhood of values ∆p ≈ 1.8 for
i = 4 and ∆p ≈ 2.4 for i = 5, the increase in the growth ratio of the maximum distortions for compression εimc/εimm

is notably accelerated (see Fig. 3c), and this is responsible for the presence of distinct minima in the curve of εimc/ε0
i

versus ∆p, after which the growth ratio of the maximum distortions under expansion–compression εimc/ε0
i increases

monotonically. Subsequently, its growth is partly determined by a decrease in the damping ratio of the maximum
distortions under expansion (Fig. 3a).

For ∆p > 1.8, the growth ratio of the maximum distortions during bubble expansion–compression decreases
with increase in the harmonic number i. In particular, for ∆p = 5, it decreases from ≈170 for i = 2 to ≈80, 61, 23
for i = 3, 4, 5 respectively.

4. Dependence of the Maximum Distortions on Liquid Viscosity. To analyze the effect of liquid
viscosity on the distortion of the spherical bubble shape, we use the solutions of the problem obtained with an
accurate accounting of this factor [Eqs. (1)–(3)], ignoring it [Eq. (7)], and ignoring the rotational motion of the
liquid, in which case system (1)–(3) reduces to the equation

Rε̈i +
[
5Ṙ +

2(i + 1)(i + 2)
Re R

]
ε̇i +

[ (i2 − 1)(i + 2)
Re R2

+
3Ṙ2

R
+

6i(i + 1)Ṙ
Re R2

− (i− 2)R̈
]
εi = 0. (8)

An approximate allowance for the effect of liquid viscosity (8) only leads to a small change in the values
of ∆p indicated above for Eq. (7) for which there is the aperiodic damping mode for i = 3, 4, and 5 in the stage of
bubble expansion.

Figure 4 gives the results of calculations using Eqs. (1)–(3) (solid curves) and Eq. (8) (dashed curves). The
wavy nature of the curves is due to the disagreement between the oscillation frequency of the bubble shape at t < 0
and the damped oscillation frequency at the beginning of the expansion stage; with an accurate allowance for the
viscosity in the cases i = 4 and 5 for small ∆p, it is also due to the rotational motion of the liquid. The latter turns
out to be significant at the end of the damped oscillation mode in the expansion stage. In this case, the rotational
motion prevents the growth of distortions of the spherical bubble shape with deviations from this shape in the same
direction (into the interior of the bubble or outward) as for the initial distortion, and the damping of distortions
that are opposing in this respect.

A comparison of the results presented in Fig. 3a and 4a suggests that the effect of liquid viscosity leads to
a strong increase in the damping ratio of the maximum distortions in the bubble-expansion stage ε0

i /εimm for all
harmonic numbers i. The minimum increase in the damping ratio occurs for i = 2 and decreases considerably as ∆p

increases. Thus, the damping ratio ε0
2/ε2mm obtained with an accurate allowance for the viscosity effect is larger

than that ignoring viscosity by a factor of almost 24 for ∆p = 1.4 and by a factor of approximately 2.2 for ∆p = 5.
The contribution of the rotational motion of the liquid is small and also decreases with increase in ∆p. Neglect of
the rotational motion results in a change in the damping ratio ε0

2/ε2mm from ≈30% for small ∆p to ≈15% for large.
As the harmonic number i increases, the effect of liquid viscosity for bubble expansion becomes even more

significant, especially in the range of small ∆p. The effect of the rotational motion of the liquid also increases.
Thus, in the case i = 5, the damping ratio ε0

i /εimm with an accurate allowance for viscosity is larger than that
ignoring viscosity by a factor of ≈7 · 104 time for ∆p = 1.4 and by a factor of ≈50 for ∆p = 5; in addition, it also
larger than that in the case of ignoring the rotational motion by a factor of ≈3.5 for ∆p = 1.4 and by a factor of
≈1.5 for ∆p = 5. The most considerable peaks of the curves of ε0

i /εimm for i = 4 and 5 at the beginning of the
range of ∆p are due to the effect of the rotational motion of the liquid.
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Fig. 4. Same as in Fig. 3 but with an accurate allowance for the effect of liquid viscosity on the
bubble shape (solid curves) and an approximate description ignoring the rotational motion of the
liquid (dashed curves).

As is evident from Fig. 4b, both the accurate and approximate methods of allowing for the liquid viscosity
lead to a considerable decrease in the rate of variation of the maximum distortions at the moment of the maximum
bubble expansion |ε̇im/ε0

i |. At the same time, unlike in the case of an inviscid liquid, the average rate |ε̇im/ε0
i | for

i = 2 and 3 increases with increase in ∆p (except for the harmonic i = 2 ignoring the rotational motion in the region
of small ∆p). For i = 4 and 5 in the region of small ∆p where there is no aperiodic damping mode, the average
value of |ε̇im/ε0

i | remains nearly constant, and its increase begins for those values of ∆p for which the aperiodic
mode of distortion damping occurs in the expansion stage.

From a comparison of Figs. 3c and 4c, it can be concluded that in the bubble compression stage, the effect of
liquid viscosity is less significant than that during bubble expansion. In this case, unlike in the expansion stage, it is
due mainly to the rotational motion of the liquid. Thus, for i = 2 with accurate allowance for viscosity, the growth
of the maximum distortions under compression εimc/εimm is ≈6 · 102 for ∆p = 1.4 and ≈1.5 · 104 for ∆p = 5, which
is approximately 1.3 times smaller than that ignoring viscosity. At the same time, the dependences of ε2mc/ε2mm

on ∆p obtained ignoring the rotational motion [Eq. (8)] and with complete neglect of viscosity [Eq. (7)] differ
insignificantly. An almost the same situation is observed for i = 3 in the interval 1.4 6 ∆p 6 5 and for i = 4, 5 in
the region of large ∆p.

It is interesting that for i = 2−4, the effect of the rotational motion of the liquid leads to a reduction in
the growth ratio of the maximum distortions εimc/εimm on most of the examined range of ∆p, whereas in the case
i = 5, this effect leads to its increase, which is specially considerable for large ∆p. Thus, for ∆p = 5, the value
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of ε5mc/ε5mm obtained with an accurate allowance for viscosity is ≈20% larger than that obtained ignoring the
rotational motion of the liquid.

In addition, it is remarkable that in the accurate method [Eqs. (1)–(3)] and approximate method [Eq. (8)]
of allowing for liquid viscosity for small ∆p and in the middle of the interval 1.4 6 ∆p 6 5, the nature of variation
in εimc/εimm is more nonmonotonic for harmonics i = 4 and 5 than for i = 2 and 3. In the case of allowing for liquid
viscosity, the occurrence of peaks in the region of small ∆p is due to the presence of peaks in the corresponding
curves of ε0

i /εimm (see Fig. 4a). In the middle of the interval ∆p, namely, where the ratio εimc/εimm increases more
rapidly, like in the case of ignoring viscosity, the indicated nonmonotonicity is due to the nonmonotonic dependence
of the oscillation phase of the maximum distortion at the time tm on ∆p.

With an accurate allowance for liquid viscosity, the growth ratio of the maximum distortions during
expansion–compression εimc/ε0

i over the entire examined range of ∆p for all i = 2−5 is slightly smaller than
that ignoring the rotational motion of the liquid and is much smaller than that with complete neglect of viscosity
(see Fig. 3d and 4d). Ignoring the wavy nature of the corresponding curves in Fig 4d, it can be concluded that
the indicated differences decrease with increase in ∆p and increase with increase in i. In particular, for ∆p = 1.4
and i = 5, neglect of only the rotational motion of the liquid leads to an overestimation of the value of εimc/ε0

i by
a factor of approximately 2.5, and complete neglect of viscosity leads to an overestimation by a factor of almost
5.5 · 104. For ∆p = 5 and i = 2, this overestimation decreases by a factor of almost 1.1 and 3, respectively.

Thus, according to Fig. 4d, in the examined interval 1.4 6 ∆p 6 5 with an accurate allowance for viscosity,
an increase in the maximum distortions during bubble expansion–compression occurs only for i = 2, 3, and 4 with
∆p > 1.6, 2.7, and 3.9, respectively. In the case i = 5, the maximum distortion at the moment of collapse is
everywhere smaller than the initial value. The largest value of the growth ratio of the maximum distortions during
bubble expansion–compression εimc/ε0

i ≈ 60 is reached for i = 2 and ∆p = 5.
Conclusions. The nature and degree of variation of a small distortion of the spherical shape of a gas bubble

subjected to a strong single expansion–compression in a liquid are studied in the case where all problem parameters
correspond to the periodic sonoluminescence of an individual bubble and the liquid pressure oscillation amplitude
is two or three times as large. At such excitation amplitudes, the periodic oscillations of the spherical bubble
are unstable. The study was performed with allowance for the bubble-shape oscillations prior to the beginning of
expansion. The shape variation of the bubble surface was analyzed on the basis of distortions that are maximal in
the initial phase.

It was established that the distortion of the spherical bubble shape first strongly decreases in the expansion
stage and then strongly increases in the compression stage. For all examined harmonic numbers i = 2−5, the
damping ratio of the maximum distortion in the expansion stage decreases with increase in the liquid pressure
oscillation amplitude ∆p; in contrast, the growth ratio of the maximum distortion under compression increases.
As the harmonic number i increases, the damping ratio of the maximum distortion under expansion increases
considerably. Ultimately, during bubble expansion–compression from the initial time of expansion to the moment
of the maximum compression (collapse), the growth ratio of the distortion of the spherical bubble shape increases
as the liquid pressure oscillation amplitude ∆p increases and as the harmonic number i decreases in their examined
ranges.

The effect of liquid viscosity was studied. In the bubble expansion stage, it considerably raises the damping
ratio of the maximum distortion. In this case, the contribution of the rotational motion due to liquid viscosity is
small, especially for small i. In the bubble compression stage, the viscosity effect is much less significant and is
determined primarily by the rotational motion of the liquid. Depending on the harmonic number, it can favor both
a reduction and an increase in the growth ratio of the maximum distortion. The liquid viscosity effect becomes less
pronounced as ∆p increases and as i decreases.
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